
Determine whether A is invertible, and if so, find the inverse. (3x3)
If so, then the matrix must be invertible. There are FAR easier ways to determine whether a matrix is invertible, however. If you have learned these methods, then here are two: Put the matrix into …
what makes a function invertible? - Mathematics Stack Exchange
Aug 30, 2021 · And a function is invertible if and only if it is one-to-one and onto, i.e. the function is a bijection. This is not necessarily a definition of invertible, but it a useful and quick way of deciding if a …
What is the most efficient way to determine if a matrix is invertible?
17 Gauss-Jordan elimination can be used to determine when a matrix is invertible and can be done in polynomial (in fact, cubic) time. The same method (when you apply the opposite row operation to …
Can a matrix be invertible but not diagonalizable? [duplicate]
Mar 29, 2017 · Then the associated matrix is invertible (the inverse being the rotation of $-\theta$) but is not diagonalisable, since no non-zero vector is mapped into a multiple of itself by a rotation of such …
linear algebra - Invertibility, eigenvalues and singular values ...
Jan 26, 2014 · A matrix is invertible iff its determinant is not zero. The determinant of a triangular matrix equals the product of its diagonal elements. Similar matrices have the same determinant and every …
linear algebra - Prove that $A+I$ is invertible if $A$ is nilpotent ...
Prove that $A+I$ is invertible if $A$ is nilpotent [duplicate] Ask Question Asked 13 years, 7 months ago Modified 5 years, 11 months ago
Why does a determinant of $0$ mean the matrix isn't invertible?
3 I always got taught that if the determinant of a matrix is $0$ then the matrix isn't invertible, but why is that? My flawed attempt at understanding things: This approaches the subject from a geometric point …
Why is only a square matrix invertible? - Mathematics Stack Exchange
Mar 30, 2013 · That a matrix is invertible means the map it represents is invertible, which means it is an isomorphism between linear spaces, and we know this is possible iff the linear spaces' dimensions …
linear algebra - Proof that columns of an invertible matrix are ...
1 we want to proove that A is invertible if the column vectors of A are linearly independent. we know that if A is invertible than rref of A is an identity matrix so the row vectors of A are linearly independent.
linear algebra - Is Matrix $A^2$ invertible if $A$ is invertible ...
It gets more complicated this way, but multiplying by a matrix transforms the unit hypercube into a "hyperparallelogram." The (absolute value of) the determinant gives us the "volume" scaling factor. If …